Mr. Jonathan K. Markoff Compass Big Blue, LLC 8116 Wilson Road Kansas City, Missouri 64125

> RE: Remedial Action Completion Report, Compass, Big Blue, LLC, Former GST Steel Facility, Tract F-7, Kansas City Missouri EPA ID No. MOD 007 118 029

Dear Mr. Markoff:

The United States Environmental Protection Agency (EPA) has reviewed the subject document, the Remedial Action Completion Report (RACR) (undated and received by EPA September 2, 2010) and is providing the following comments to be addressed by performing additional field work and submittal of a revised cleanup report. In general, the characterization, cleanup, and disposal of bulk PCB-contaminated waste were not performed in accordance with federal regulations (40 CFR Part 761.61). Following are specific comments that should be addressed in order to ensure that an adequate cleanup of PCBs was performed.

- 1. The confirmation sampling information provided in the RACR was insufficient to determine if the PCB cleanup has been completed, and was not performed in accordance with 40 CFR Part 761.61(a)(6) and Subpart O. A minimum of 3 samples are required to confirm the cleanup of any bulk PCB remediation, and only 2 confirmation samples were collected as reported in the RACR. In addition, the locations of the confirmation samples were not adequately provided. If you determine that additional PCB remediation is necessary at the site, post remediation confirmation sampling should be performed in accordance with 40 CFR Part 761.61(a)(6) and Subpart O, and the location of confirmation samples should be accurately delineated on a site map included in a cleanup report.
- 2. Due to the fact that PCB remediation was performed at the site without collecting adequate confirmation samples, the site will need to be re-characterized/sampled in accordance with the sampling procedures prescribed in 40 CFR Part 761.61(a)(2) and Subpart N. Figure 2 of the RACR indicates that the original site characterization samples were not collected in accordance with 40 CFR Part 761.61(a)(2), and therefore was not adequately characterized for PCB contamination. Because all of the samples contained PCBs at concentrations that exceeded the site cleanup standard, the vertical and horizontal extent of contamination has not been defined.

AWMD/RCAP/BM:bft:09/09/10:H:AWMD/RCAP/Cores10/BM:CompassPCBltr9-10.doc

RCAP

Morrison 09/10 /10 **RCAP**

Herstowski 09/10/10

When you prepare a revised cleanup report should include a site map that delineates where all characterization samples were collected. If new sampling results indicate that PCB contamination remains in the soil at levels exceeding cleanup standards, you will need to perform additional remediation at the site. In accordance with 40 CFR 761.61(a)(4)(A), the PCB cleanup standard for soil at the site is 1 part per million at the surface or up to 10 parts per million, if a cap meeting the requirements of 40 CFR part 761.61(a)(7) and (8) are met.

- 3. The Manifests were illegible. Better copies should be provided in the revised report.
- 4. The analytical data for the wipe samples was reported in incorrect units that make the data meaningless. Wipe sample results should be reported in accordance with 40 CFR Part 761.274.

For your convenience, I have enclosed copies of the regulations referenced above. Once you have developed a Site Characterization/Sampling Plan, I would be glad to review it for compliance with the aforementioned regulations. Please contact me at 913-551-7755 or morrison.bruce@epa.gov if you have any questions concerning this matter.

Sincerely,

Bruce A. Morrison Project Manager Air and Waste Management Division

Enclosures

cc: Christine Kump-Mitchell, MDNR

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

REGION VII 901 NORTH 5TH STREET KANSAS CITY, KANSAS 66101

SEP 1 0 2010

Mr. Jonathan K. Markoff Compass Big Blue, LLC 8116 Wilson Road Kansas City, Missouri 64125

RE: Remedial Action Completion Report, Compass, Big Blue, LLC, Former GST Steel Facility, Tract F-7, Kansas City Missouri EPA ID No. MOD 007 118 029

Dear Mr. Markoff:

The United States Environmental Protection Agency (EPA) has reviewed the subject document, the Remedial Action Completion Report (RACR) (undated and received by EPA September 2, 2010) and is providing the following comments to be addressed by performing additional field work and submittal of a revised cleanup report. In general, the characterization, cleanup, and disposal of bulk PCB-contaminated waste were not performed in accordance with federal regulations (40 CFR Part 761.61). Following are specific comments that should be addressed in order to ensure that an adequate cleanup of PCBs was performed.

- 1. The confirmation sampling information provided in the RACR was insufficient to determine if the PCB cleanup has been completed, and was not performed in accordance with 40 CFR Part 761.61(a)(6) and Subpart O. A minimum of 3 samples are required to confirm the cleanup of any bulk PCB remediation, and only 2 confirmation samples were collected as reported in the RACR. In addition, the locations of the confirmation samples were not adequately provided. If you determine that additional PCB remediation is necessary at the site, post remediation confirmation sampling should be performed in accordance with 40 CFR Part 761.61(a)(6) and Subpart O, and the location of confirmation samples should be accurately delineated on a site map included in a cleanup report.
- 2. Due to the fact that PCB remediation was performed at the site without collecting adequate confirmation samples, the site will need to be re-characterized/sampled in accordance with the sampling procedures prescribed in 40 CFR Part 761.61(a)(2) and Subpart N. Figure 2 of the RACR indicates that the original site characterization samples were not collected in accordance with 40 CFR Part 761.61(a)(2), and therefore was not adequately characterized for PCB contamination.

Because all of the samples contained PCBs at concentrations that exceeded the site cleanup standard, the vertical and horizontal extent of contamination has not been defined. When you prepare a revised cleanup report should include a site map that delineates where all characterization samples were collected. If new sampling results indicate that PCB contamination remains in the soil at levels exceeding cleanup standards, you will need to perform additional remediation at the site. In accordance with 40 CFR 761.61(a)(4)(A), the PCB cleanup standard for soil at the site is 1 part per million at the surface or up to 10 parts per million, if a cap meeting the requirements of 40 CFR part 761.61(a)(7) and (8) are met.

- 3. The Manifests were illegible. Better copies should be provided in the revised report.
- 4. The analytical data for the wipe samples was reported in incorrect units that make the data meaningless. Wipe sample results should be reported in accordance with 40 CFR Part 761.274.

For your convenience, I have enclosed copies of the regulations referenced above. Once you have developed a Site Characterization/Sampling Plan, I would be glad to review it for compliance with the aforementioned regulations. Please contact me at 913-551-7755 or morrison.bruce@epa.gov if you have any questions concerning this matter.

Sincerely,

Bruce A. Morrison Project Manager

Air and Waste Management Division

Brus A. home

Enclosures

cc: Christine Kump-Mitchell, MDNR

Home Page > Executive Branch > Code of Federal Regulations > Electronic Code of Federal Regulations

e-CFR Data is current as of September 2, 2010

Title 40: Protection of Environment

PART 761—POLYCHLORINATED BIPHENYLS (PCBs) MANUFACTURING, PROCESSING, DISTRIBUTION IN COMMERCE, AND USE PROHIBITIONS Subpart D—Storage and Disposal

Browse Previous | Browse Next

§ 761.61 PCB remediation waste.

This section provides cleanup and disposal options for PCB remediation waste. Any person cleaning up and disposing of PCBs managed under this section shall do so based on the concentration at which the PCBs are found. This section does not prohibit any person from implementing temporary emergency measures to prevent, treat, or contain further releases or mitigate migration to the environment of PCBs or PCB remediation waste.

- (a) Self-implementing on-site cleanup and disposal of PCB remediation waste. EPA designed the self-implementing procedure for a general, moderately-sized site where there should be low residual environmental impact from remedial activities. The procedure may be less practical for larger or environmentally diverse sites. For these other sites, the self-implementing procedure still applies, but an EPA Regional Administrator may authorize more practical procedures through paragraph (c) of this section. Any person may conduct self-implementing cleanup and disposal of PCB remediation waste in accordance with the following requirements without prior written approval from EPA.
- (1) Applicability. (i) The self-implementing procedures may not be used to clean up:
- (A) Surface or ground waters.
- (B) Sediments in marine and freshwater ecosystems.
- (C) Sewers or sewage treatment systems.
- (D) Any private or public drinking water sources or distribution systems.
- (E) Grazing lands.
- (F) Vegetable gardens.
- (ii) The self-implementing cleanup provisions shall not be binding upon cleanups conducted under other authorities, including but not limited to, actions conducted under section 104 or section 106 of CERCLA, or section 3004(u) and (v) or section 3008(h) of RCRA.
- (2) Site characterization. Any person conducting self-implementing cleanup of PCB remediation waste must characterize the site adequately to be able to provide the information required by paragraph (a)(3) of this section. Subpart N of this part provides a method for collecting new site characterization data or for assessing the sufficiency of existing site characterization data.
- (3) Notification and certification. (i) At least 30 days prior to the date that the cleanup of a site begins, the person in charge of the cleanup or the owner of the property where the PCB remediation waste is

located shall notify, in writing, the EPA Regional Administrator, the Director of the State or Tribal environmental protection agency, and the Director of the county or local environmental protection agency where the cleanup will be conducted. The notice shall include:

- (A) The nature of the contamination, including kinds of materials contaminated.
- (B) A summary of the procedures used to sample contaminated and adjacent areas and a table or cleanup site map showing PCB concentrations measured in all pre-cleanup characterization samples. The summary must include sample collection and analysis dates. The EPA Regional Administrator may require more detailed information including, but not limited to, additional characterization sampling or all sample identification numbers from all previous characterization activities at the cleanup site.
- (C) The location and extent of the identified contaminated area, including topographic maps with sample collection sites cross referenced to the sample identification numbers in the data summary from paragraph (a)(3)(i)(B) of this section.
- (D) A cleanup plan for the site, including schedule, disposal technology, and approach. This plan should contain options and contingencies to be used if unanticipated higher concentrations or wider distributions of PCB remediation waste are found or other obstacles force changes in the cleanup approach.
- (E) A written certification, signed by the owner of the property where the cleanup site is located and the party conducting the cleanup, that all sampling plans, sample collection procedures, sample preparation procedures, extraction procedures, and instrumental/chemical analysis procedures used to assess or characterize the PCB contamination at the cleanup site, are on file at the location designated in the certificate, and are available for EPA inspection. Persons using alternate methods for chemical extraction and chemical analysis for site characterization must include in the certificate a statement that such a method will be used and that a comparison study which meets or exceeds the requirements of subpart Q of this part, and for which records are on file, has been completed prior to verification sampling.
- (ii) Within 30 calendar days of receiving the notification, the EPA Regional Administrator will respond in writing approving of the self-implementing cleanup, or requiring additional information. If the EPA Regional Administrator does not respond within 30 calendar days of receiving the notice, the person submitting the notification may assume that it is complete and acceptable and proceed with the cleanup according to the information the person provided to the EPA Regional Administrator. Once cleanup is underway, the person conducting the cleanup must provide any proposed changes from the notification to the EPA Regional Administrator in writing no less than 14 calendar days prior to the proposed implementation of the change. The EPA Regional Administrator will determine in his or her discretion whether to accept the change, and will respond to the change notification verbally within 7 calendar days and in writing within 14 calendar days of receiving it. If the EPA Regional Administrator does not respond verbally within 7 calendar days and in writing within 14 calendar days of receiving the change notice, the person who submitted it may deem it complete and acceptable and proceed with the cleanup according to the information in the change notice provided to the EPA Regional Administrator.
- (iii) Any person conducting a cleanup activity may obtain a waiver of the 30-day notification requirement, if they receive a separate waiver, in writing, from each of the agencies they are required to notify under this section. The person must retain the original written waiver as required in paragraph (a)(9) of this section.
- (4) Cleanup levels. For purposes of cleaning, decontaminating, or removing PCB remediation waste under this section, there are four general waste categories: bulk PCB remediation waste, non-porous surfaces, porous surfaces, and liquids. Cleanup levels are based on the kind of material and the potential exposure to PCBs left after cleanup is completed.
- (i) Bulk PCB remediation waste. Bulk PCB remediation waste includes, but is not limited to, the following non-liquid PCB remediation waste: soil, sediments, dredged materials, muds, PCB sewage sludge, and industrial sludge.
- (A) High occupancy areas. The cleanup level for bulk PCB remediation waste in high occupancy areas is ≤1 ppm without further conditions. High occupancy areas where bulk PCB remediation waste remains at concentrations >1 ppm and ≤10 ppm shall be covered with a cap meeting the requirements of paragraphs (a)(7) and (a)(8) of this section.

- (B) Low occupancy areas. (1) The cleanup level for bulk PCB remediation waste in low occupancy areas is ≤25 ppm unless otherwise specified in this paragraph.
- (2) Bulk PCB remediation wastes may remain at a cleanup site at concentrations >25 ppm and \leq 50 ppm if the site is secured by a fence and marked with a sign including the M_L mark.
- (3) Bulk PCB remediation wastes may remain at a cleanup site at concentrations >25 ppm and ≤100 ppm if the site is covered with a cap meeting the requirements of paragraphs (a)(7) and (a)(8) of this section.
- (ii) Non-porous surfaces. In high occupancy areas, the surface PCB cleanup standard is \leq 10 µg/100 cm² of surface area. In low occupancy areas, the surface cleanup standard is <100 µg/100 cm² of surface area. Select sampling locations in accordance with subpart P of this part or a sampling plan approved under paragraph (c) of this section.
- (iii) Porous surfaces. In both high and low occupancy areas, any person disposing of porous surfaces must do so based on the levels in paragraph (a)(4)(i) of this section. Porous surfaces may be cleaned up for use in accordance with §761.79(b)(4) or §761.30(p).
- (iv) Liquids. In both high and low occupancy areas, cleanup levels are the concentrations specified in §761.79(b)(1) and (b)(2).
- (v) Change in the land use for a cleanup site. Where there is an actual or proposed change in use of an area cleaned up to the levels of a low occupancy area, and the exposure of people or animal life in or at that area could reasonably be expected to increase, resulting in a change in status from a low occupancy area to a high occupancy area, the owner of the area shall clean up the area in accordance with the high occupancy area cleanup levels in paragraphs (a)(4)(i) through (a)(4)(iv) of this section.
- (vi) The EPA Regional Administrator, as part of his or her response to a notification submitted in accordance with §761.61(a)(3) of this part, may require cleanup of the site, or portions of it, to more stringent cleanup levels than are otherwise required in this section, based on the proximity to areas such as residential dwellings, hospitals, schools, nursing homes, playgrounds, parks, day care centers, endangered species habitats, estuaries, wetlands, national parks, national wildlife refuges, commercial fisheries, and sport fisheries.
- (5) Site cleanup. In addition to the options set out in this paragraph, PCB disposal technologies approved under §§761.60 and 761.70 are acceptable for on-site self-implementing PCB remediation waste disposal within the confines of the operating conditions of the respective approvals.
- (i) Bulk PCB remediation waste. Any person cleaning up bulk PCB remediation waste shall do so to the levels in paragraph (a)(4)(i) of this section.
- (A) Any person cleaning up bulk PCB remediation waste on-site using a soil washing process may do so without EPA approval, subject to all of the following:
- (1) A non-chlorinated solvent is used.
- (2) The process occurs at ambient temperature.
- (3) The process is not exothermic.
- (4) The process uses no external heat.
- (5) The process has secondary containment to prevent any solvent from being released to the underlying or surrounding soils or surface waters.
- (6) Solvent disposal, recovery, and/or reuse is in accordance with relevant provisions of approvals issued according to paragraphs (b)(1) or (c) of this section or applicable paragraphs of §761.79.
- (B) Bulk PCB remediation waste may be sent off-site for decontamination or disposal in accordance with this paragraph, provided the waste is either dewatered on-site or transported off-site in containers meeting the requirements of the DOT Hazardous Materials Regulations (HMR) at 49 CFR parts 171

through 180.

- (1) Removed water shall be disposed of according to paragraph (b)(1) of this section.
- (2) Any person disposing off-site of dewatered bulk PCB remediation waste shall do so as follows:
- (i) Unless sampled and analyzed for disposal according to the procedures set out in §§761.283,761.286, and 761.292, the bulk PCB remediation waste shall be assumed to contain ≥50 ppm PCBs.
- (ii) Bulk PCB remediation wastes with a PCB concentration of <50 ppm shall be disposed of in accordance with paragraph (a)(5)(v)(A) of this section.
- (iii) Bulk PCB remediation wastes with a PCB concentration ≥50 ppm shall be disposed of in a hazardous waste landfill permitted by EPA under section 3004 of RCRA, or by a State authorized under section 3006 of RCRA, or a PCB disposal facility approved under this part.
- (iv) The generator must provide written notice, including the quantity to be shipped and highest concentration of PCBs (using extraction EPA Method 3500B/3540C or Method 3500B/3550B followed by chemical analysis using EPA Method 8082 in SW-846 or methods validated under subpart Q of this part) at least 15 days before the first shipment of bulk PCB remediation waste from each cleanup site by the generator, to each off-site facility where the waste is destined for an area not subject to a TSCA PCB Disposal Approval.
- (3) Any person may decontaminate bulk PCB remediation waste in accordance with §761.79 and return the waste to the cleanup site for disposal as long as the cleanup standards of paragraph (a)(4) of this section are met.
- (ii) Non-porous surfaces. PCB remediation waste non-porous surfaces shall be cleaned on-site or off-site for disposal on-site, disposal off-site, or use, as follows:
- (A) For on-site disposal, non-porous surfaces shall be cleaned on-site or off-site to the levels in paragraph (a)(4)(ii) of this section using:
- (1) Procedures approved under §761.79.
- (2) Technologies approved under §761.60(e).
- (3) Procedures or technologies approved under paragraph (c) of this section.
- (B) For off-site disposal, non-porous surfaces:
- (1) Having surface concentrations <100 μg/100 cm² shall be disposed of in accordance with paragraph (a)(5)(i)(B)(2)(ii) of this section. Metal surfaces may be thermally decontaminated in accordance with §761.79(c)(6)(i).
- (2) Having surface concentrations \geq 100 µg/100 cm² shall be disposed of in accordance with paragraph (a)(5)(i)(B)(2)(iii) of this section. Metal surfaces may be thermally decontaminated in accordance with §761.79(c)(6)(ii).
- (C) For use, non-porous surfaces shall be decontaminated on-site or off-site to the standards specified in §761.79(b)(3) or in accordance with §761.79(c).
- (iii) Porous surfaces. Porous surfaces shall be disposed on-site or off-site as bulk PCB remediation waste according to paragraph (a)(5)(i) of this section or decontaminated for use according to §761.79(b) (4), as applicable.
- (iv) Liquids. Any person disposing of liquid PCB remediation waste shall either:
- (A) Decontaminate the waste to the levels specified in §761.79(b)(1) or (b)(2).

- (B) Dispose of the waste in accordance with paragraph (b) of this section or an approval issued under paragraph (c) of this section.
- (v) Cleanup wastes. Any person generating the following wastes during and from the cleanup of PCB remediation waste shall dispose of or reuse them using one of the following methods:
- (A) Non-liquid cleaning materials and personal protective equipment waste at any concentration, including non-porous surfaces and other non-liquid materials such as rags, gloves, booties, other disposable personal protective equipment, and similar materials resulting from cleanup activities shall be either decontaminated in accordance with §761.79(b) or (c), or disposed of in one of the following facilities, without regard to the requirements of subparts J and K of this part:
- (1) A facility permitted, licensed, or registered by a State to manage municipal solid waste subject to part 258 of this chapter.
- (2) A facility permitted, licensed, or registered by a State to manage non-municipal non-hazardous waste subject to §§257.5 through 257.30 of this chapter, as applicable.
- (3) A hazardous waste landfill permitted by EPA under section 3004 of RCRA, or by a State authorized under section 3006 of RCRA.
- (4) A PCB disposal facility approved under this part.
- (B) Cleaning solvents, abrasives, and equipment may be reused after decontamination in accordance with §761.79.
- (6) Cleanup verification —(i) Sampling and analysis. Any person collecting and analyzing samples to verify the cleanup and on-site disposal of bulk PCB remediation wastes and porous surfaces must do so in accordance with subpart O of this part. Any person collecting and analyzing samples from non-porous surfaces must do so in accordance with subpart P of this part. Any person collecting and analyzing samples from liquids must do so in accordance with §761.269. Any person conducting interim sampling during PCB remediation waste cleanup to determine when to sample to verify that cleanup is complete, may use PCB field screening tests.
- (ii) Verification. (A) Where sample analysis results in a measurement of PCBs less than or equal to the levels specified in paragraph (a)(4) of this section, self-implementing cleanup is complete.
- (B) Where sample analysis results in a measurement of PCBs greater than the levels specified in paragraph (a)(4) of this section, self-implementing cleanup of the sampled PCB remediation waste is not complete. The owner or operator of the site must either dispose of the sampled PCB remediation waste, or reclean the waste represented by the sample and reinitiate sampling and analysis in accordance with paragraph (a)(6)(i) of this section.
- (7) Cap requirements. A cap means, when referring to on-site cleanup and disposal of PCB remediation waste, a uniform placement of concrete, asphalt, or similar material of minimum thickness spread over the area where remediation waste was removed or left in place in order to prevent or minimize human exposure, infiltration of water, and erosion. Any person designing and constructing a cap must do so in accordance with §264.310(a) of this chapter, and ensure that it complies with the permeability, sieve, liquid limit, and plasticity index parameters in §761.75(b)(1)(ii) through (b)(1)(v). A cap of compacted soil shall have a minimum thickness of 25 cm (10 inches). A concrete or asphalt cap shall have a minimum thickness of 15 cm (6 inches). A cap must be of sufficient strength to maintain its effectiveness and integrity during the use of the cap surface which is exposed to the environment. A cap shall not be contaminated at a level ≥1 ppm PCB per AroclorTM(or equivalent) or per congener. Repairs shall begin within 72 hours of discovery for any breaches which would impair the integrity of the cap.
- (8) Deed restrictions for caps, fences and low occupancy areas. When a cleanup activity conducted under this section includes the use of a fence or a cap, the owner of the site must maintain the fence or cap, in perpetuity. In addition, whenever a cap, or the procedures and requirements for a low occupancy area, is used, the owner of the site must meet the following conditions:
- (i) Within 60 days of completion of a cleanup activity under this section, the owner of the property shall:
- (A) Record, in accordance with State law, a notation on the deed to the property, or on some other

instrument which is normally examined during a title search, that will in perpetuity notify any potential purchaser of the property:

- (1) That the land has been used for PCB remediation waste disposal and is restricted to use as a low occupancy area as defined in §761.3.
- (2) Of the existence of the fence or cap and the requirement to maintain the fence or cap.
- (3) The applicable cleanup levels left at the site, inside the fence, and/or under the cap.
- (B) Submit a certification, signed by the owner, that he/she has recorded the notation specified in paragraph (a)(8)(i)(A) of this section to the EPA Regional Administrator.
- (ii) The owner of a site being cleaned up under this section may remove a fence or cap after conducting additional cleanup activities and achieving cleanup levels, specified in paragraph (a)(4) of this section, which do not require a cap or fence. The owner may remove the notice on the deed no earlier than 30 days after achieving the cleanup levels specified in this section which do not require a fence or cap.
- (9) Recordkeeping. For paragraphs (a)(3), (a)(4), and (a)(5) of this section, recordkeeping is required in accordance with §761.125(c)(5).
- (b) Performance-based disposal. (1) Any person disposing of liquid PCB remediation waste shall do so according to §761.60(a) or (e), or decontaminate it in accordance with §761.79.
- (2) Any person disposing of non-liquid PCB remediation waste shall do so by one of the following methods:
- (i) Dispose of it in a high temperature incinerator approved under §761.70(b), an alternate disposal method approved under §761.60(e), a chemical waste landfill approved under §761.75, or in a facility with a coordinated approval issued under §761.77.
- (ii) Decontaminate it in accordance with §761.79.
- (3) Any person may manage or dispose of material containing <50 ppm PCBs that has been dredged or excavated from waters of the United States:
- (i) In accordance with a permit that has been issued under section 404 of the Clean Water Act, or the equivalent of such a permit as provided for in regulations of the U.S. Army Corps of Engineers at 33 CFR part 320.
- (ii) In accordance with a permit issued by the U.S. Army Corps of Engineers under section 103 of the Marine Protection, Research, and Sanctuaries Act, or the equivalent of such a permit as provided for in regulations of the U.S. Army Corps of Engineers at 33 CFR part 320.
- (c) Risk-based disposal approval. (1) Any person wishing to sample, cleanup, or dispose of PCB remediation waste in a manner other than prescribed in paragraphs (a) or (b) of this section, or store PCB remediation waste in a manner other than prescribed in §761.65, must apply in writing to the Regional Administrator in the Region where the sampling, cleanup, disposal, or storage site is located, for sampling, cleanup, disposal, or storage occurring in a single EPA Region; or to the Director, Office of Resource Conservation and Recovery, for sampling, cleanup, disposal, or storage occurring in more than one EPA Region. Each application must include information described in the notification required by paragraph (a)(3) of this section. EPA may request other information that it believes necessary to evaluate the application. No person may conduct cleanup activities under this paragraph prior to obtaining written approval by EPA.
- (2) EPA will issue a written decision on each application for a risk-based method for PCB remediation wastes. EPA will approve such an application if it finds that the method will not pose an unreasonable risk of injury to health or the environment.
- [63 FR 35448, June 29, 1998, as amended at 64 FR 33761, June 24, 1999; 72 FR 57239, Oct. 9, 2007; 74 FR 30232, June 25, 2009]

Browse Previous | Browse Next

For questions or comments regarding e-CFR editorial content, features, or design, email ecfr@nara.gov.

For questions concerning e-CFR programming and delivery issues, email webteam@gpo.gov.

Section 508 / Accessibility

Supreme Court Center	US Laws	Blawgs.FM	Blaw	gSearch.com	<u>Justia</u>

Search Justia

Justia Law United States Code of Federal Regulations Title 40 - Protection of Environment CHAPTER I—ENVIRONMENTAL PROTECTION AGENCY PART 761—POLYCHLORINATED BIPHENYLS (PCBs) MANUFACTURING, PROCESSING, DISTRIBUTION IN COMMERCE, AND USE PROHIBITIONS > Subpart N—Cleanup Site Characterization Sampling for PCB Remediation Waste in Accordance with §761.61(a)(2)

40 C.F.R. Subpart N—Cleanup Site Characterization Sampling for PCB Remediation Waste in Accordance with §761.61(a)(2)

Title 40 - Protection of Environment

Title 40: Protection of Environment

PART 761—POLYCHLORINATED BIPHENYLS (PCBs) MANUFACTURING, PROCESSING, DISTRIBUTION IN COMMERCE, AND USE PROHIBITIONS

Browse Previous | Browse Next

Subpart N—Cleanup Site Characterization Sampling for PCB Remediation Waste in Accordance with §761.61(a)(2)

Source: 63 FR 35464, June 29, 1998, unless otherwise noted.

§ 761.260 Applicability.

This subpart provides a method for collecting new data for characterizing a PCB remediation waste cleanup site or for assessing the sufficiency of existing site characterization data, as required by §761.61(a)(2).

§ 761.265 Sampling bulk PCB remediation waste and porous surfaces.

- (a) Use a grid interval of 3 meters and the procedures in §§761.283 and 761.286 to sample bulk PCB remediation waste that is not in a container and porous surfaces.
- (b) Use the following procedures to sample bulk PCB remediation waste that is in a single container.
- (1) Use a core sampler to collect a minimum of one core sample for the entire depth of the waste at the center of the container. Collect a minimum of 50 cm³ of waste for analysis.
- (2) If more than one core sample is taken, thoroughly mix all samples into a composite sample. Take a subsample of a minimum of 50 cm³ from the mixed composite for analysis.
- (c) Use the following procedures to sample bulk PCB remediation waste that is in more than one container.
- (1) Segregate the containers by type (for example, a 55-gallon drum and a roll-off container are types of containers).
- (2) For fewer than three containers of the same type, sample all containers.
- (3) For more than three containers of the same type, list the containers and assign each container an unique sequential number. Use a random number generator or table to select a minimum of 10 percent of the containers from the list, or select three containers, whichever is the larger.
- (4) Sample the selected container(s) according to paragraph (b) of this section.

§ 761.267 Sampling non-porous surfaces.

(a) Sample large, nearly flat, non-porous surfaces by dividing the surface into roughly square portions approximately 2 meters on each side.

Follow the procedures in §761.302(a).

(b) It is not necessary to sample small or irregularly shaped surfaces.

§ 761.269 Sampling liquid PCB remediation waste.

- (a) If the liquid is single phase, collect and analyze one sample. There are no required procedures for collecting a sample.
- (b) If the liquid is multi-phasic, separate the phases, and collect and analyze a sample from each liquid phase. There are no required procedures for collecting a sample from each single phase liquid.
- (c) If the liquid has a non-liquid phase which is >0.5 percent by total weight of the waste, separate the non-liquid phase from the liquid phase and sample it separately as a non-liquid in accordance with §761.265.

§ 761.272 Chemical extraction and analysis of samples.

Use either Method 3500B/3540C or Method 3500B/3550B from EPA's SW-846, Test Methods for Evaluating Solid Waste, or a method validated under subpart Q of this part, for chemical extraction of PCBs from individual and composite samples of PCB remediation waste. Use Method 8082 from SW-846, or a method validated under subpart Q of this part, to analyze these extracts for PCBs.

§ 761.274 Reporting PCB concentrations in samples.

- (a) Report all sample concentrations for non-liquid PCBs on a dry weight basis as micrograms of PCBs per gram of sample (ppm by weight). Report surface sampling results as µg/100 cm². Divide 100 cm² by the surface area and multiply this quotient by the total number of micrograms of PCBs on the surface to obtain the equivalent measurement of micrograms per 100 cm².
- (b) Report all sample concentrations for liquid PCBs on a wet weight basis as micrograms of PCBs per gram of sample (ppm by weight).

Browse Previous | Browse Next

Copyright © Justia - No copyright claim is made to any of the government data on these pages.

Company :: Terms of Service :: Privacy Policy :: Contact Us :: Have a Happy Day!

Justia:: 40 C.F.R. Subpart O-Sampling To Verify Completion of Self-Implementing Cle... Page 1 of 4

Supreme Court Center US Laws Blawgs.FM BlawgSearch.com Just	<u>tia</u>

Justia Law United States Code of Federal Regulations Title 40 - Protection of Environment CHAPTER I—ENVIRONMENTAL PROTECTION AGENCY PART 761—POLYCHLORINATED BIPHENYLS (PCBs) MANUFACTURING, PROCESSING, DISTRIBUTION IN COMMERCE, AND USE PROHIBITIONS > Subpart O—Sampling To Verify Completion of Self-Implementing Cleanup and On-Site Disposal of Bulk PCB Remediation Waste and Porous Surfaces in Accordance With §761.61(a)(6)

40 C.F.R. Subpart O—Sampling To Verify Completion of Self-Implementing Cleanup and On-Site Disposal of Bulk PCB Remediation Waste and Porous Surfaces in Accordance With §761.61(a)(6)

Title 40 - Protection of Environment

Title 40: Protection of Environment

PART 761—POLYCHLORINATED BIPHENYLS (PCBs) MANUFACTURING, PROCESSING, DISTRIBUTION IN COMMERCE, AND USE PROHIBITIONS

Browse Previous | Browse Next

Subpart O—Sampling To Verify Completion of Self-Implementing Cleanup and On-Site Disposal of Bulk PCB Remediation Waste and Porous Surfaces in Accordance With §761.61(a)(6)

Source: 63 FR 35465, June 29, 1998, unless otherwise noted.

§ 761.280 Application and scope.

Follow the procedures in this subpart when sampling to verify completion of the cleanup for self-implementing, on-site disposal of bulk PCB remediation waste and porous surfaces consistent with the levels of §761.61(a)(4)(i) and (iii). The objective of this subpart is not to search for new contamination. Confirmation of compliance with the cleanup levels in §761.61(a)(4) is only verifiable for the area sampled in accordance with this subpart. Do not make conclusions or extrapolations about PCB concentrations outside of the area which has been cleaned up and verified based on the results of this verification sampling.

§ 761.283 Determination of the number of samples to collect and sample collection locations.

This section addresses how to determine the number of samples to collect and sample collection locations for bulk PCB remediation waste and porous surfaces destined to remain at a cleanup site after cleanup.

- (a) *Minimum number of samples*. (1) At each separate cleanup site at a PCB remediation waste location, take a minimum of three samples for each type of bulk PCB remediation waste or porous surface at the cleanup site, regardless of the amount of each type of waste that is present. There is no upper limit to the number of samples required or allowed.
- (2) This is an example of how to calculate the minimum number of required samples at a PCB remediation waste location. There are three distinct cleanup sites at this example location: a loading dock, a transformer storage lot, and a disposal pit. The minimum number of samples to take appears in parentheses after each type of waste for each cleanup site. The PCB remediation wastes present at the loading dock are concrete (three samples) and clay soil (three samples). The non-liquid PCB remediation wastes present at the transformer storage lot are oily soil (three samples), clay soil (three samples) and gravel (three samples). The PCB remediation wastes present at the disposal pit are sandy soil (three samples), clay soil (three samples), oily soil (three samples), industrial sludge (three samples), and gravel (three samples).
- (b) Selection of sample locations—general. (1)(i) Use a square-based grid system to overlay the entire area to be sampled. Orient the grid axes on a magnetic north-south line centered in the area and an east-west axis perpendicular to the magnetic north-south axis also centered in the area.
- (ii) If the site is recleaned based on the results of cleanup verification conducted in accordance with §761.61(a)(6), follow the procedures in paragraph (b) of this section for locating sampling points after the recleaning, but reorient the grid axes established in paragraph (b)(1)(i) of

this section by moving the origin one meter in the direction of magnetic north and one meter in the direction east of magnetic north.

- (2) Mark out a series of sampling points 1.5 meters apart oriented to the grid axes. The sampling points shall proceed in every direction to the extent sufficient to result in a two-dimensional grid completely overlaying the sampling area.
- (3) Collect a sample at each point if the grid falls in the cleanup area. Analyze all samples either individually or according to the compositing schemes provided in the procedures at §761.289. So long as every sample collected at a grid point is analyzed as either an individual sample or as part of a composite sample, there are no other restrictions on how many samples are analyzed.
- (c) Selection of sample locations—small cleanup sites. When a cleanup site is sufficiently small or irregularly shaped that a square grid with a grid interval of 1.5 meters will not result in a minimum of three sampling points for each type of bulk PCB remediation waste or porous surface at the cleanup site, there are two options.
- (1) Use a smaller square grid interval and the procedures in paragraph (b) of this section.
- (2) Use the following coordinate-based random sampling scheme. If the site is recleaned based on the results of cleanup verification conducted in accordance with §761.61(a)(6), follow the procedures in this section for locating sampling points after the recleaning, but select three new pairs of sampling coordinates.
- (i) Beginning in the southwest corner (lower left when facing magnetic north) of the area to be sampled, measure in centimeters (or inches) the maximum magnetic north-south dimension of the area to be sampled. Next, beginning in the southwest corner, measure in centimeters (or inches) the maximum magnetic east-west dimension of the area to be sampled. Designate the north-south and east-west dimensions (describing the west and south boundaries, respectively, of the area to be sampled), as the reference axes of a square-based grid system.
- (ii) Use a random number table or random number generator to select a pair of coordinates that will locate the sample within the area to be sampled. The first coordinate in the pair is the measurement on the north-south axis. The second coordinate in the pair is the measurement on the east-west axis. Collect the sample at the intersection of an east-west line drawn through the measured spot on the north-south axis, and a north-south line drawn through the measured spot on the east-west axis. If the cleanup site is irregularly shaped and this intersection falls outside the cleanup site, select a new pair of sampling coordinates. Continue to select pairs of sampling coordinates until three are selected for each type of bulk PCB remediation waste or porous surface at the cleanup site.
- (d) Area of inference. Analytical results for an individual sample point apply to the sample point and to an area of inference extending to four imaginary lines parallel to the grid axes and one half grid interval distant from the sample point in four different directions. The area of inference forms a square around the sample point. The sides of the square are parallel to the grid axes and one grid interval in length. The sample point is in the center of the square area of inference. The area of inference from a composite sample is the total of the areas of the individual samples included in the composite.

§ 761.286 Sample size and procedure for collecting a sample.

At each selected sampling location for bulk PCB remediation waste or porous surfaces, collect at least 20 milliliters of waste, or a portion of sufficient weight for the chemical analyst to measure the concentration of PCBs and still have sufficient analytical detection sensitivity to reproducibly measure PCBs at the levels designated in §761.61(a)(4). Use a core sampler having a diameter ≥2 cm and ≤3 cm. Collect waste to a maximum depth of 7.5 cms.

§ 761.289 Compositing samples.

Compositing is a method of combining several samples of a specific type of bulk PCB remediation waste or porous surface from nearby locations for a single chemical analysis. There are two procedures for compositing bulk PCB remediation waste samples. These procedures are based on the method for selecting sampling site locations in §761.283(b) and (c). The single chemical analysis of a composite sample results in an averaging of the concentrations of its component samples. The area of inference of a composite is determined by the area of inference of each of its component samples as described in §761.283(d). Compositing is not mandatory. However, if compositing is used, it must be performed in accordance with the following procedures.

- (a) Compositing in the field or in a laboratory. Compositing may occur either in the field or in a laboratory. Prepare composite samples using equal volumes of each constituent or component sample. Composited samples must be from the same type of bulk PCB remediation waste or porous surface (see the example at §761.283(a)(2)). Mix composite samples thoroughly. From each well-mixed composite sample, take a portion of sufficient weight for the chemical analyst to measure the concentration of PCBs and still have sufficient analytical detection sensitivity to reproducibly measure PCBs at the levels designated in §761.61(a)(4).
- (b)(1) Compositing from samples collected at grid points in accordance with §761.283(b). There are two kinds of composite sampling procedures depending on the original source of contamination of the site.

- (i) The first procedure is for sites with multiple point sources of contamination (such as an old electrical equipment storage area, a scrap yard, or repair shop) or for unknown sources of contamination. Under this compositing scheme, composite a maximum of nine samples for each type of bulk PCB remediation waste or porous surface at the cleanup site. The maximum dimensions of the area enclosing a nine grid point composite is two grid intervals bounded by three collinear grid points (3.0 meters or approximately 10 feet long). Take all samples in the composite at the same depth. Assure that composite sample areas and individually analyzed samples completely overlay the cleanup site.
- (ii) The second procedure is for a single point source of contamination, such as discharge into a large containment area (e.g., pit, waste lagoon, or evaporation pond), or a leak onto soil from a single drum or tank. Single point source contamination may be from a one-time or continuous contamination. Composites come from two stages: an initial compositing area centered in the area to be sampled, and subsequent compositing areas forming concentric square zones around the initial compositing area. The center of the initial compositing area and each of the subsequent compositing areas is the origin of the grid axes.
- (A) Definition of the initial compositing area. The initial compositing area is based on a square that contains nine grid points, is centered on the grid origin, and has sides two grid intervals long. The initial compositing area has the same center as this square and sides one half a grid interval more distant from the center than the square. The initial compositing area has sides three grid intervals long.
- (B) Definition of subsequent compositing areas. Subsequent composite sampling areas are in concentric square zones one grid interval wide around the initial compositing area and around each successive subsequent compositing area. The inner boundary of the first subsequent compositing area is the outer boundary of the initial compositing area. The outer boundary of the first subsequent compositing area is centered on the grid origin, has sides one grid interval more distant from the grid origin than the inner boundary, and is two grid intervals longer on a side than the inner boundary. The inner boundary of each further subsequent compositing area is the outer boundary of the previous subsequent compositing area. The outer boundary of each further subsequent compositing area is centered on the grid origin, has sides one grid interval more distant from the grid origin than the inner boundary, and is two grid intervals longer on a side than the inner boundary.
- (C) Taking composite samples from the initial and subsequent compositing areas. (1) Select composite sampling areas from the initial compositing area and subsequent compositing areas such that all grid points in the initial compositing area and subsequent compositing areas are part of a composite or individual sample.
- (2) A person may include in a single composite sample a maximum of all nine grid points in the initial compositing area. The maximum number of grid points in a composite sample taken from a subsequent compositing area is eight. These eight grid points must be adjacent to one another in the subsequent compositing area, but need not be collinear.
- (2) Compositing from samples taken at grid points or pairs of coordinates in accordance with §761.283(c). Samples collected at small sites are based on selecting pairs of coordinates or using the sample site selection procedure for grid sampling with a smaller grid interval.
- (i) Samples collected from a grid having a smaller grid interval. Use the procedure in paragraph (b)(1)(i) of this section to composite samples and determine the area of inference for composite samples.
- (ii) Samples collected from pairs of coordinates. All three samples must be composited. The area of inference for the composite is the entire area sampled.

§ 761.292 Chemical extraction and analysis of individual samples and composite samples.

Use either Method 3500B/3540C or Method 3500B/3550B from EPA's SW-846, Test Methods for Evaluating Solid Waste, or a method validated under subpart Q of this part, for chemical extraction of PCBs from individual and composite samples of PCB remediation waste. Use Method 8082 from SW-846, or a method validated under subpart Q of this part, to analyze these extracts for PCBs.

§ 761.295 Reporting and recordkeeping of the PCB concentrations in samples.

- (a) Report all sample concentrations for bulk PCB remediation waste and porous surfaces on a dry weight basis and as micrograms of PCBs per gram of sample (ppm by weight).
- (b) Record and keep on file for 3 years the PCB concentration for each sample or composite sample.

§ 761.298 Decisions based on PCB concentration measurements resulting from sampling.

(a) For grid samples which are chemically analyzed individually, the PCB concentration applies to the area of inference as described in §761.283(d).

- (b) For grid samples analyzed as part of a composite sample, the PCB concentration applies to the area of inference of the composite sample as described in §761.283(d) (i.e., the area of inference is the total of the areas of the individual samples included in the composite).
- (c) For coordinate pair samples analyzed as part of a composite sample, in accordance with §§761.283(c)(2) and 761.289(b)(2)(ii), the PCB concentration applies to the entire cleanup site.

Browse Previous | Browse Next

Copyright © Justia - No copyright claim is made to any of the government data on these pages.

Company :: Terms of Service :: Privacy Policy :: Contact Us :: Have a Happy Day!